
O’Caml Reins

Mike Furr

But...
What’s wrong with the OCaml standard
library?

Small collection of data structures

Closed to feature enhancements

Only updated with O’Caml releases

Aren’t there existing implementations of
other data structures?

Existing Implementations:

Implemented structures

5 Lists (O(1) cat, random access, etc...)

4 Sets / 4 Maps (AVL, R/B, Patricia, Splay)

2 Heaps (Binomial, Skew Binomial)

O’Caml-Reins is so much more than this!

Unified Signatures

type t = (int * float) option list

Need a collection of t’s

Hmm... should I use a List or a Set?

What if I change my mind later?

They have almost the same signature,
right...?

Signature comparison

List Set

No compare needed for t Must write compare for t

Doesn’t provide efficient
compare for List.t Efficient compare for Set.t

Choice of fold_left or
fold_right 1 choice: fold

fold_left takes acc as first
argument

fold takes acc as second
argument

Before
type t = (int * float) option list
module T = struct
 type t = t
 (* Ugh, writing a custom compare function
 would be annoying! *)
 let compare = Pervasives.compare
end
module Collection = AVL.Set(T)
Collection.fold (fun acc x -> ...) acc0 t0

module Collection = List
Collection.fold_left(fun acc x -> ...) acc0 t0

With Reins
type t = (int * float) option list
module T = MonoList(MonoOption(MonoPair(Int)(Float)))
(* Look Ma, no boilerplate! *)
module Collection = AVL.Set(T)
Collection.fold (fun acc x -> ...) acc0 t0

type ‘a t2 = ‘a option list
module Collection = PolyList(PolyOption(PolyBase))
Collection.fold(fun acc x -> ...) acc0 t0

Changing data structures is as easy
as changing the module definition!

Iterators
Implemented on top of zipper-style cursors

 type ordering =
 | PreOrder
 | InOrder
 | PostOrder

 type direction =
 | Ascending of ordering
 | Descending of ordering

 type 'a traversal =
 | Traverse_All
 | Traverse_If of ('a -> bool)
 | Traverse_While of ('a -> bool)

 val create : direction -> 'a elt traversal -> 'a collection -> 'a t

Allows persistent, bi-directional C++ style navigation:

As well as higher order forms:

Iterator Ops

 val at_end : 'a t -> bool
 val next : 'a t -> 'a t

 val at_beg : 'a t -> bool
 val prev : 'a t -> 'a t

val iter : ('a elt -> unit) -> 'a t -> unit
val fold : ('a -> 'b elt -> 'a) -> 'a -> 'b t -> 'a

Benchmarks

Unbiased benchmarks are notoriously hard to
write

Want to measure actual usage scenarios, not
just 100,000 inserts

Build on the work by Moss et al, on automatic
benchmark generation

Automatic Benchmarking
Use a profile which concisely summarizes a usage
scenario for an ADT

distribution of ADT operations

What % of nodes are mutated/observed

etc...

Basic operations on Profiles:

Extract a profile from an existing application

Construct a random program for a given profile

Benchmark Generation

Collect a sampling of profiles (by hand or
from existing applications)

Generate a collection of random programs
that fit these profiles

Benchmark this collection

Build a decision tree to choose to the fastest
implementation based on a given profile

Oracle

Run your application with an Oracle data structure

module TSet = OracleSet(T)

Extract the profile (at_exit)

Use the decision tree to choose best implementation

Optimization for free!

Questions?

Thanks to Stephen Weeks and Jane Street
Capital for a putting together OSP!

Quickcheck
let rs = Random.State.make_self_init () in
let rand_int = Int.gen rs in
let rand_list = List(Int).gen rs ~size:100 in
 ...

 (let module T = RandCheck(struct
 module Arg = GenPair(Set)(Set)
 let desc = "[Set] Union is commutative"
 let law (t1,t2) =

 let t = Set.union t1 t2 in
 let t' = Set.union t2 t1 in
 Set.compare t t' = 0

 end) in T.test);

